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The analytic behavior of a certain kind of nonlocal separable potentials previously considered by one of us
(ANM) is studied in the complex angular momentum plane. The amplitude derived from such potentials
has cuts only in the locations expected for the Mandelstam representation, including one corresponding to
the crossed channel. The spectral functions are explicitly evaluated. A study of the singularities in the
complex tt plane of the partial wave amplitudes shows that there is only one Regge trajectory to the right
of the Rel —=3/2, and that its behavior is that oi the principal Regge trajectory corresponding to a Yukawa
potential. This is confirmed through the evaluation of the high-energy limit of the total amplitude in the
crossed channel.

1. INTRODUCTION

A MONG the successes of the Regge formalism,
perhaps the most important from the physical

point of view is the role of the "trajectories" in the
interpretation of various resonances and high-energy
cross sections. The extrapolation to the relativistic
domain of the ideas derived from potential scattering
has been proposed in detail by Chew, '' Frautschi, ' '
Gell-Mann, ' and Gribov and Pomeranchuk. 4 Since,
however, these ideas in the relativistic domain cannot
easily be "proved" by conventional techniques of, say,
field theory, faith in these has to be sustained, apart
from general physical considerations, by the validity of
the Regge formalism in potential scattering.

From the mathematical point of view, the most
important success of the Regge formalism is the facility
with which it is now possible to study the analyticity
properties of amplitudes simultaneously in the energy
(s) and momentum transfer (l) variables. The assump-
tion of bounded behavior as t —+ ~, which was needed
for proofs of the Mandelstam representation' before
the complex l plane was available, strongly points to
the advantages of the Regge formalism. The techniques
of complex angular momentum have vastly extended the
mathematical tools for handling potentials more compli-
cated than the Vukawa type, so as to examine what
kind of analytic properties obtain for the amplitudes
from such potentials.

These techniques are being increasingly used for
studying not only the amplitudes arising from scattering
by specihc types of potentials, but those from suitable
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'S. C. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys.
Rev. 126, 2204 (1962).

V. N. Gribov and I. Ya. Pomeranchuk, Phys. Rev. Letters
9, 238 (1962).

s R. Blankenbecler et al. , Ann. Phys. (N. Y.) 10, 62 (1960);
see also, A. Klein, J. Math. Phys. 1, 41 (1960).

truncation schemes in 6eld theory. Thus, Lee and
Sawyer' have found that the solution of the ladder ap-
proximation to the so-called Bethe-Salpeter equation
for scattering of two spinless particles admits of Regge
poles in a fashion strongly reminiscent of the cor-
responding behavior of the scattering amplitude from a
Yukawa potential. For a more impressive example of
the appearance of Regge trajectory in Geld theory,
Frautschi, ~ and Levy' independently, have shown by
considering a suitable set of diagrams that the high-
energy cross section for electron scattering with radia-
tive corrections to all orders has exactly the same form
as demanded by Regge on the basis of potential scat-
tering alone.

Further generalizations for potential scattering are
also under way. Cornwall and Ruderman' have shown
the validity of the Mandelstam representation as well
as the "correct" behavior of Regge trajectories for a
class of energy-dependent, Yukawa-type potentials,
signifying nonlocality in time, but not in space. Qn the
other hand, Barut and Calogero" have found by
studying certain types of soluble potentials (square-well
and centrifugal types) that it is possible for a scattering
amplitude to be meromorphic in the entire / plane
without satisfying the Mandelstam representation.
For such cases, those authors have found that the
analytic continuation is not unique. Unless, therefore,
such examples are ruled out on deeper physical grounds,
e.g. , crossing relations, they might well prove a stumb-
ling block to the general acceptance of the Mandelstam
representation which may remain an open question for
some time before further discriminating criteria are
established.

In this paper, we have been motivated by a desire to
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study the analytic properties of amplitudes from a
certain class of spatially nonlocal potentials —the so-
called separable potentials —with which we have been
associated for some time. " "It appears to us that such
potentials have a very natural place in the "Regge
scheme" in which the basic complex variables are s
and l, in much the same way as a local potential of the
Charap-Fubini type'4 has a place in the "Mandelstam
scheme" which works directly with the complex vari-
ables s and t. Therefore, insofar as the Regge formalism
permits a study of the analytic behavior of amplitudes
in s and t via the (s,l) scheme without the usual restric-
tion to the Lehmann ellipse, it was thought worthwhile
to study this question for certain types of separable
potentials which can be defined for general t' values so
as to fit in within the Regge framework. In a sense, the
present work may be regarded as a direct continuation
of an earlier paper" where a class of separable potentials
was found to satisfy the various partial wave dispersion
relations (as well as correct threshold behavior), but
the analytic properties in s and t of the complete ampli-
tude were not investigated for them. The present work
now seeks to fill this gap as well as to study the predic-
tions of such potentials with regard to the S-matrix
poles.

|A"e would like to suggest that our purpose in studying
such potentials for the analytic properties of amplitudes
is not entirely academic. It has been shown elsewhere" "
that such potentials can be profitably used for solving
problems involving three-body systems, and obtaining
structures for the explicit three-particle amplitudes.
Now a three-body system seems to be too general an
entity to be studied in an entirely kinematical fashion,
so that if the analytic properties of such systems in all
the relevant variables have to be understood in greater
details, additional input information, preferably of
dynamical origin, must be supplied in advance. This
last requirement can be met, e.g. , by allowing a three-
particle svstem to satisfy the formal Schrodinger equa-
tion whose solution (if it can be expressed in a simple
form) would explicitly incorporate many of the analyti-
cal properties of the former which might otherwise be
hard to discover. This use of separable potentials in
eGecting the solution of such a Schrodinger equation has
been already discussed in references 12 and 13. It may,
therefore, be of interest to study the analytic properties
of three-body systems with separable potentials which
have been so devised as to reproduce certain "known"
features of two-particle amplitudes. For example, if
(as is generally believed) a two-particle amplitude
satisfies the Mandelstam representation, then a separ-
able potential devised to satisfy this crietrion can be
used to construct an "exact" three-particle amplitude.
It is likely that the analytic properties of such an ampli-

"A.
¹ Mitra, Phys. Rev. 123, 1892 |,'1961).

u A. N. Mitra, Nucl. Phys. 32, 529 (1962).
"A. N. Mitra, Phys. Rev. 127, 1342 (1962)."J.Charap and S. I ubini, Nuovo Cimento 14, 540 (1959).

tude in all the relevant variables would be specified in
much greater details than might be a8orded with the
mere input information of Mandelstam representation
and unitarity for the two-particle amplitudes. In any
case it may be of some interest to compare the knowledge
of cuts and singularities of a three-particle amplitude
obtained in this manner with a corresponding knowledge
derived from alternative methods, e.g., the Landau-
Cutkosky" techniques.

In this paper we confine ourselves to a study of
separable potentials in the context of two-particle
amplitudes only. Study of three-particle amplitudes
will be the subject of a subsequent publication.

In Sec. 2, the analytic behavior of the scattering
amplitude f(s,t) is studied by a generalization of the
results of reference 11 to the complex / plane. It is
found that f(s,t) has cuts only in the locations expected
for the "Mandelstam representation, "with a "crossed-
channel" cut in addition to the conventional one in
Yukawa-potential scattering. ' In Sec. 3, the properties
of the partial wave amplitude Ai(s) in the complex
I plane as well as the high-energy behavior of f(s,t) are
investigated. The results are very similar to those ob-
tainable from Yukawa-type potentials.

In Sec. 4 a comparison is made of the present ap-
proach with some contemporary ones, and a general
procedure for constructing separable potentials from
arbitrary amplitudes is suggested.

and

s= k', s= cose, t= —2k'(1 —s), (2 4)

(2.5)

(2.6)

Di(s) = 1—4' ds' s' '~'ei(1+-', P's' ')/(s' —s). (2.7)

As was shown in A, the amplitudes Ai(s) defined by
(2.5) satisfy the standard partial wave dispersionrela-
tions expected of them, with the left-hand cut in s
being over —~ &s &~

—4P', the possible poles in—-',P'&s&0, and the physical cut in 0&s& ro. Further,
"L. D. Landau, Nucl. Phys. 13, 181 (1960); see also, R. E.

Cutkosky, J. Math. Phys. 1, 429 (1960).

2. DOUBLE DISPERSION REPRESENTATION

We start by summarizing the main results obtained
in reference 11 which is referred to as A in the following.
The "potential" under consideration is defined by

(I I
I'I p') = —() /~)Z(2I+ 1)ui(p)ui(p')&i(p P') (2.1)

where

up(p) = (2/ps)e/(1+ tpsp —s) (2 2)

The scattering amplitude from such a potential is
given by

f(s,t)=Pi(21+1)Ai(s)Pi(1+1/2s) (2.3)
where
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the Born approximation amplitude fbi(t) was shown to
be exactly the same as given by the Yukawa potential,

V (r) = —(4irs) /rM) e e—' (2.8)

and
B,(s) =r,I,/D,

I (s) =1—D (s).

(2.10)

(2.11)

The sum in (2.3) due to the part Ei(s) in (2.9) is found
in the standard way to be

Finally, we remark that the series (2.3) is convergent
within the Lehmann ellipse. This is shown in Appendix
A. Thus, our separable potential (2.2) gives at least the
the same domain of analyticity over t as found for an
ordinary Yukawa potential of range P, corresponding
to positive energies (s)0). In addition, the results of
Appendix A show that it is possible with our potential
to establish the convergence of the series (2.3) even for
negative s, as long as 0&t(P'. This fact will be of use
later in this section in establishing the analytic behavior
of f(s,t) over a larger (s,t) domain, via complex angular
momentum techniques.

Ke now turn to the investigation of further properties
of the amplitude (2.3) within the Regge formalism.

Before converting (2.3) into a Regge integral, it is
convenient to extract its Born approximation part
explicitly. This is done by writing

A, (s) =&V,(s)+B,(s), (2.9)
where

now well known, depends essentially on the inequality"

lPi( —z)/sinvrll ~( lrr/(21+1) sin8l'Is

Xexp[(~R+s) I8rl (s——18irl) l4l7, (2.16)

(8=8ir+i8r, t=ln+ilr)

so that for the integral in (2.14) to be convergent, one
no longer needs the limitations $=8r&n [as in (A9),
Appendix A for integral t7, but the trivial condition
w —l8iil)0. As a matter of fact, even for the most
unfavorable case lg= —

~ and x =eg, the convergence of
the integral term in (2.14) is assured for Res) 0 if the
amplitude Bi(s) goes to zero at least as fast as (21+1) '".
That this is indeed the case for our amplitude dehned by
(2.10) is clear from Eqs. (A4) and (A5) of Appendix A.
[Convergence over the infinite semicircle in the t plane
follows in the conventional manner, using (2.16) and
(A5).7

To see the analytic properties of f(s,t) defined by
(2.14), we start by examining the physical region s&0
and t&0. Now it has been shown in Sec. 3 that there is
only one Regge pole to the right of t= —3/2 for our
potential, and that it has only the right-hand cut in s.
Using this result in (2.14), we find that in the physical
region (s&0, t&0), f(s,t) is analytic except for the cut
along the positive real axis in s. For the unphysical
regions in t (t)0), the definition of f(s,t) must be

specified by analytic continuation. This is done in the
conventional way by writing for Res&0,

Pi(—1—-,'ts—')

fe(t) =8m'Z(P' —t)-'. (2.12) = —x ' sin+ dt' (t' —t) 'Pi(1+-', t's ') (2.17)

The part of (2.3) due to Bi(s) is now converted into the
Watson-Sommerfeld integral representation:

f(s, t)=fa(t)+ ', s (21+1)d-t Bi(s)Pi(—z)/sinai, (2.13)
C

f(s,t) =f~(t)+-'i

( t)
X (2t+1)Bi(s)Pil —1——

l
sins-t

2si

+Q (2n,+1)P;(s)P,.[—1—(t/2s)7/sinsn;(s), (2.14)

where t=n;(s) is the jth Regge pole and P, (s) is the
residue of rrBi(s) at t=n;—:

lim [t—n, (s)7Bi(s)(—m) =P;(s).
l~a2'

(2.15)

The justification of the step from (2.13) to (2.14), as is

where the contour C encloses the poles l=0, 1, 2,
on the real axis by going round it in the clockwise
direction. Shifting the contour to the line Rel= ——, leads
to the formula

which shows that f(s,t) has a cut in t along the positive
real axis," and that it is analytic in t for Ret&0 and
Res&0.

To extend this statement to negative values of s-
and this is compatible with the definition (2.17)—the
convergence of the Regge integral in (2.14) for negative
s must first be examined. Now we have seen that the
Regge form, viz. Eq. (2.14), overlaps with the series
form (2.3) for 0&t(P' and Res)0. However, the re-
sults of Appendix A show that (2.3) is convergent also
for Res&0. Using the same techniques as of Appendix
A for l= —sr+iP, it is easy to show that the Regge form
(2.14) certainly converges for s=s'+is, s'& —srtfs, with
0(t(Ps, and that this limit on s' can be pushed further
to the right by a more economical manipulation of
certain inequalities. Thus, we 6nd that at least for
Res & ——,'P' and 0&t&P', the series and Regge forms are
analytic and equivalent. By analytic continuation (cf.,
e.g. , Blankenbecler et al. , reference 5, p. 71) therefore,
the validity of (2.14) for negative s is established, and

"See reference 10 for a very complete discussion of the asymp-
totic behavior of Pg(s)."Actually the cut starts only from t =P', since it has been shown
in Appendix A that the series for (2.3) is convergent, and hence
analytic in t, for t&P, in which region the forms (2.3) and (2.13)
are completely equivalent representations of f(s,t).



2120 A. N. MITRA AND J. D. ANAND

f(s,t) =pr=' dt' A (s,t')/(t' —t), (2, 18)

and using (2.17) to obtain (apart from subtractions)

A (s,t) = (2sr)s) 8(8'—t)

Eq. (2.17) can now be used for analytic continuation of
P~(—1—t/2s) for negative s.

The spectral representation of f(s,t) in the t variable
is now deduced by writing

potential gives, not only the usual right-hand (unitarity)
cut in the s variable, but a left-hand cut as well. ' To
extend the spectral functions B+ beyond 0&t&P', one
must again use Regge integrals like (2.14) for (2.20)
and (2.21), and obtain, apart from a Regge pole con-
tribution to B+(s,t),

—chico

B+(s,t) = -',i
1

P~L—1—(t/2s)7
X (2l+1)s'"

I
A, (s) (2.27)

1
2

—='400z

dl (2l+1)B((s)Pg(1+-',ts ')

—(2n+1)P(s)P„(1+-,'ts '),. (2.19)

B (s,t) = ', s', -
$—ioo

X (2l+1)Ci(s)P~I —1—(t/2s)7/sinsrl. (2.28)

B~(s,t) =P(2l+1)Pq(1+—,'ts ')s'~'I A~(s) I',

(s)0); (2.20)

B (s,t)=P(2l+1)P~(1+tzts ')Ci(s), (s&0),
0

(2.21)

the last term representing the contribution of the Regge
pole to the t-spectral function A (s,t)."

To examine the analytic behavior of f(s,t) in the s
variable, it is once again convenient to look at Eq. (2.3)
which is valid for 0&t&P . For this range of t, the dis-
continuities of f(s, t) defined by (2.3)—(2.12) across the
real axis in the s plane are seen to be the following:

Convergence of (2.27) and (2.28) is again established
as before, through the use of (2.16) and the techniques
of Appendix A. Using now the representation (2.17)
for P~(—z), the last two expressions for B~(s,t) are
seen to be quite consistent with the representation (2.18)
and (2.19).This completes the discussion of simultane-
ous analyticity of f(s, t) in the two variables s and t,
viz. , f(s, t) is an analytic function except for the cuts:

(1) t)P' s)0 (2) t)P' s& ——'P' (2.29)

It may be mentioned that (2.27) tacitly assumes the
validity of the unitarity condition for complex l. This
condition is, in the language of Fivel, "

where where
S*(le,s'")S(l,s'~') = 1 (2.30)

Ci(s) = (2sr9/s)Ii(s)D~ '(s)
&&Pq(1+st's ')i)(——'P —s), (2.22)

e being the usual step function. In deriving (2.20) and
(2.21), use has been made of the following relations

S(l,s'~') = 1+2is't'A~(s), (Res) 0). (3.21)

Now using the definition of D~(s) given by (2.7) which
is valid for Rel) —3/2, it is seen that

D~(s+i e) —D~(s —ie) = —2is'~'Nt(s)& (2.32)

B,(s+ i e) B((s i e)— —
=2is'~'NP(s)/D, (s+ie)Dq(s —ie)
= 2is' "

I
A ~ (s) I

', (s ~& 0); (2.23)

so that (2.31) is re-expressible as

S(l s'~') =D~(s i )/De~(s+i—), e

thus explicitly verifying (2.30).

(2.33)

e(*+')-e( -')
isrP((x)) (—1—~& x~& 1); (2.24)

=2i sinsrle~( —x), (—po&x& —1). (2.25)

Thus, apart from possible subtractions, f(s, t) satisfies
the s-spectral representation

8x9
f(s,t) = +

P2

B+(s',t)
ds +

S —S

B (s', t)
ds' . (2.26)

S —S

It is, therefore, seen that in contrast with the s-
spectral representation for a Yukawa potential, ' our

"It has been shown by Cheng (to be published) that 2 (s,t) is
not analytic in t. This however, does not affect the analyticity of
f(s,t), for which it is enough that A (s,t) be de6ned along the line
0&t& pp, according to (2.18).

"In order to ensure that the left-hand cut indeed exists, and
that there are no fortuitous cancellations in the series (2.21) so
astomakeB (s,t) identicallyzero, itisenoughtoshowthat B (s, t)
does sot vanish over at least a certain region of s and for a small
value of X, such that terms of order gP) are negligible. To order XP,

(2.21) and (2.22) reduce to
8~92 p2B (s,t)= g(2t+1)Pi 1+—Bi 1+—

S 2$ 2$

X
~$ @"+~ /'2$

p (S )II2(S S)

This series is convergent for 0&t&P', according to the results of
Appendix A. If we now take a large and negative value of s
(~s ~))-,pp), it is immediately seen that each term of this series is
a positive quantity )since E&(1)=+1 and Q&(z) for z&1 and in-
tegral t, has no zerosj, so that the series as a whole is a nonzero
positive quantity. Therefore, B (s,t) for s & —zPP is not identically
zero, showing that the left-hand s cut in f(s,t) represents a genuine
feature of our model.

'0 D. Fivel, Phys. Rev. 125, 1085 (1962).
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The additional cut over the region t)0, s&0 for the
case of our potential has a simple meaning in terms of
the third variable u defined by u= —2s(1+cosg), i.e.,

u+t+4s=O. (2.34)

Thus, t)0, s&0 corresponds to t&0, I&0 which just
stands for the cut region in the so-called "crossed
channel" in the held-theoretical Mandelstam represen-
tation. Curiously, it does not represent any conventional
"exchange potential" effects (s)0, u)0). In any case,
the representation deduced for our potential does have
a place in the field-theoretical Mandelstam representa-
tion, though it is somewhat wider than the one for a
purely Yukawa amplitude.

This result may not be unexpected in view of the fact
that our potential is highly nonlocal. Now it is recog-
nized" that interactions of finite range in field theory
produce scattering amplitudes whose properties are
partly analogous to those of single partial wave ampli-
tudes with suitable nonlocal potentials of the same
range. It is, therefore, likely that the amplitudes A1(s)
derived from (2.2) might equally well arise from suitable
truncation schemes in a field theory, and to that extent
incorporate some residual effects of the latter, of the
type exhibited above.

3. REGGE POLES—THRESHOLD AND
HIGH-ENERGY BEHAVIOR

In this section we shall examine the amplitude (2.5)—
(2.7) for singularities in the complex / plane.

We note first that the denominator function D1(s)
defined by (2.7) can be analytically continued to
Rel )—3/2+ e(2)0), since near s =0, Q1 (1+P2/2s)

s'+'. The form (2.7) is especially convenient for large
s. For small s on the other hand, it is more convenient
(for purposes of explicit evaluation) to express (2.7) in
an alternative form based on the representation (valid
for Res)0 and Ims=O)

dE r' '(e 2*(+1) '"—, (3 1)
Po

~,=x+ (x —1)'I x=1+-'P's-' (3.2)

D, (O) = 1—4~2) P-'(l+-')-'

Thus, the Regge pole at threshold is given by

l =n(0) = ——',+o., o =42r9/P.

(3.4a)

(3 5)

Further, it is shown in Appendix 8 that the D~ function
near threshold has the form

D1(s) = 1—o L1—(—s/P2) '+4='~'

XI'(/+1)1'(-', —l)l/(l+-,'). (3.6)

The zeros of (3.6) would, therefore, give the positions
of the Regge poles near threshold. For this purpose one
sets in (3.6)

l—=n(s) = —22+o.+q(s) (3.7)

where, according to (3.5), 2)(s) is expected to be small.
Thus, q(s) is a solution of the equation

g+ ( ~/P)'+"o—~ '"I'(1 o g)1'(,'—+n—+o)=-0 (3.7a).
For o-) 0, this gives a solution consistent with the small-
ness of rP2:

~(~)= —g(o) (—~/p')',

g (o.) = —2r
—' "oI' (1—o.)I' (-,'+ o.).

(3.8)

(3.8a)

This formula, however, does not hold if o- is a positive
integer, and one has to turn to Eq. (3.7a) for a solution
in such a case. That is, if a= 1, Eq. (3.7a) is expressible
as

according to (2.6) and (3.1). Thus, (2.7) and (3.3) are
equivalent representations of D1(s) within their common
domain of analyticity in the / plane, viz. , Rel) —1.
Now the position of the Regge pole for a given s is the
solution of the equation

D1(s)= 0,

so that (2.7) or (3.3) shows that l=n(s) is an analytic
function of s for Res&0, and that it has a right-hand
cut along the line Res~&0, Ims=0.

To find the position of the Regge pole near threshold,
the integration in (3.3) when s —+0 is immediately
performed to give

Substituting (3.1) in (2.7) and interchanging the order
of $ and s' integrations, it is easy to deduce

rP = 2r '"(—s/P')'+ I'(1—g)1'(-,'+g),
whence one has the solution (for o.= 1)

(3.9)

D1(g) 1 42r2)1 d( g
1 1Dl2p g—(p

— 1)2$—1/2 (3 3) g($) ( S/2p ) +g ( S/p )
1 Xfln( —s/P')+2+/(22) —f(1)j. (3.10)

Equation (3.3) shows, like Eq. (2.7), that D1(s) is an
analytic function of s, with a cut only for real and posi-
tive s, and the discontinuity in (3.3) works out as

D1(S+ie)—Dg(S—2e)

= —Sx9i
'o

22S'"1V1(—S), (3 4)
"M. Ruderman and S. Gasiorowicz, Nuovo Cimento 8, 861

(i958).

y(x) =—lnl (x).
ds

(3.10a)

As would be expected, Eqs. (3.8) and (3.10) show

l=n(s) as an analytic function of s with a right-hand
cut starting at s=0. In addition, as the origin is ap-
proached from the negative real axis of s, q(s), while

2' It may be noted that the solution (3.8) is not consistent for
0 &0, since g then becomes infinite for small s.
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Ret)(k) = —g(o) cospro (k/p)",

Imti(k) =g(o) sincere (k/P)".
(3.11)

Both these functions have cusp behavior at k=0 for
0(z '.

remaining real, increases towards zero. Finally, for
Res&0 and 0&a ~& 1, ti(s) acquires a positive imaginary
part according to the replacement s=k'+ie, in (3.8)
or (3.10)."For the case 0 &o.& 1, the real and imaginary
parts of ri(s) above threshold are given, according to
(3.8), by

examine the zeros of (3.6) near l= —st, so that setting
l+ ', =-l', the poles near l'=0 are given by

1—
g (l') (—s/P) l'= 0, (3.16)

(3.17)

and for s=0—,by

where the function g(x) is defined as in (3.8a), and
g(0) = 1.s' From (3.16) one shows by proceeding exactly
as in reference 24 that the Desai-Newton poles are
given, for s=0+, by

l'=N7r(era '+i)/a,

lim
~
dr)/dk ~~ ~, (o &-,').

It'-+p
(3.12)

where
l'=7re(i ',A'I—u-pr')/a,

a= ln
I
p'/s l))1,

(3.18)

(3.19)

o & 1/2, a& 3/2. (3.15)

It can be verified from (3.13) that if o.& st, i.e., an s-wave
bound state does not occur, then the numerator of
(3.13) does cot vanish for k&0 (no s-wave resonance).
On the other hand, if 3/2& o.& 1/2, then an examination
of (3.14) shows that a p-wave resonance is possible.
Precisely the same conclusion is indicated in terms of
the Regge trajectories: The curve for Reg versus k
moves up (no cusp) or bends down (cusp) at threshold
according as 0-& or &—,', respectively. Thus, the tra-
jectory (3.11) follows a pattern expected of any reason-
able kind of potential.

Recently, Desai and Newton'4 have shown that the
threshold behavior of a partial wave amplitude is con-
nected with the existence of an infinite number of Regge
trajectories that arrive at l= ——, as s ~ 0.%e would like
to point out that the amplitude considered here admits
of these Desai-Newton poles. For this it is necessary to

"This is, of course, the expected behavior for a Regge pole, and
the sign ambiguity in rj in going from (3.9) to (3.10) was resolved
by this criterion.

~ B. Desai and R. G. Newton (to be published).

The physical meaning of the case o= —, Lwhich inci-
dentally makes a(0) =0 in (3.5)j, is linked directly
with the condition of bound state formation for s
waves. This fact may also be checked through the old-
fashioned effective-range formulas which can be deduced
exactly from (2.2) for various partial waves. In particu-
lar, for s and p waves the relevant formulas are"

k cotbp ——ReDp(k')/cVp(k')

= (k'/Po)[1 Po.k ' t—an '(2k/P)7/

Qp (1+-,'P'k ') (3.13)

k' cot8i ——k' ReDi(k')/Art (k')

k4 Po ( P' 2k) P'a
=—1——

I 1+ can-' —~+
Po k 5 2k' P) k'

Q (1+lp'k '), (3 14)

from which the conditions of s- and p-wave bound state
formation are, respectively, deducible as

and e is a positive integer such that n«a. The quantity
A in (3.18) is defined, as in reference 24, by
g "(l')=1+Al', so that

A = —g'(o) =4 (1)—4 (-') —~ '=»2+1—~-'. (3.2o)

The significance of e as a positive integer is that for the
poles (3.17) and (3.18) to exist, one should have Rel')~ 0,
to allow a zero to develop in the left-hand side of (3.16)
as s —& 0. Thus, these poles exist only on the right half
of the l' plane. On the other hand, if ReP &0, Eq. (3.16)
cannot be satisfied unless g(l')=0, and this does not
occur in the present case, as may be seen from (3.8a).
Thus, the "threshold poles" of Desai and Newton are
not present on the left-hand half of the /' plane in our
model.

Finally, for the high-energy behavior of the principal
Regge trajectory according to our potential, we turn
once again to the definitions (2.7) and (3.3) of D~(s).
Equation (3.3) shows that for large ~s~ the integral
term is of order s '~', except for /= —1 when the integral
diverges at the upper limit. LThe same conclusion also
follows, less directly, from (2.7).j At high energies one,
therefore, expects the pole to shift near l= —1. For a
more precise location one writes l= —1+v, where

~

v ~&&1, and makes use of the following approximation
deducible from Erdelyi':

Q i+„(x)= v ' —ln —(x—1)—Qp(x)+O(v). (3.21)

Using (3.21) in (2.7), elementary integrations are en-
countered to deduce (for Res&0)

D, (s) =1—Pov '(—s)-'i'

+P~( s) '"»{PfP+—2( s)'"3/( 4s)) —(3.22)—
The motion of the principal Regge pole for large

~

s
~

is
then given by

l—=pr(s) = —1+v= —1+prr( s) M'(1 po( s) —'~'— —
XlnL —4s/P(P+2( —s)'i')$) ', (3.23)

~' Our notation diRers from that of reference 24 in the replace-
ments X ~ l' and C(X) —+ g(l').

2' Bateman Manuscript Project; Higher Transcendental Functions,
edited by A. Krdblyi (McGraw-Hill Book Company, Inc. , New
York, 1953), Vol. l.
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f(s,t) = ,'i—-
s—$00

dl (2l+1)Al(s)/vr cosa.t

—s ' P (—1)" '2NA(s, tt ——',)Q 1(s)
n=l

where
+ (2n+1) secs-nQ i( s)f, (s),— (3.26)

f.(s) = El(s) —Di(s)
dl —[l a(s)]

(3.27)

In the limit of high-momentum transfer (~s~))1), the
amplitude (3.26) reduces in the standard way to its
last term. For algebraic simplicity we consider only the
case

s=k'+ie, ~t/s~))1, alld ~s/p'~))1. (3.28)

In this limit it is easily veri6ed that the following results
hold:

n(s) = —1+i = —1+iPos'i' (3..29)

Q-(1+sP's ')= —Di(s) =o '= is'"/Po; (33o—)
—L=a (s)

"Note again that n(k'+ie) has a positive imaginary part, as
required by theory."S.Mandeistam, Ann. Phys. (N. Y.) 19, 254 (1962).

whose analytic continuation for s= k'+i e is'r

n(ks+i e) = —iyiPok '—(1 —~Pok '—

+oPk ' tan '(2k/P)+iPok

X in+(++4k')'I'/4k'j) '. (3.24)

Equations (3.23) and (3.24) show indeed that n(s) tends
to —1 as

~

s
~

~ eo.

It has by now become intuitively obvious that for the
potential (2.2) we are considering, there is only ole
Regge pole to the right of the line Ret= —3/2, for a
given value of the coupling constant. In particular, it
is the principal pole whose high-energy end is described
by Eqs. (3.23)—(3.24), and whose threshold behavior is
governed by Eqs. (3.8)—(3.11).This pole is, of course,
distinct from the Desai-Newton poles given by (3.17)
and (3.18). As for the other Regge poles, lying to the
left of the line Ret= —3/2, we are not entitled to discuss
them on the basis of the representations (2.5)—(2.'7) or
(3.3).

For the sake of completeness we may record the high-
energy limit of the amplitude defined by (2.14). For
this purpose the line integral is shifted to the left up to
the line Rel= —3/2+e, according to Mandelstam's"
prescription (cf., reference 6), viz. ,

Pi(—s) escort=s ' cscs.l

XQi( —s) —s 'secs. lQ i t(—s), (3.25)

and the full amplitude (without now separating the Born
term) is deduced as

and
n(t) = 1+—i/at (3.34)

(3.35)

= —2Pgf1 —iPot I ln( —t)+ ' ' ' j (3 36)

for small o..
These results are completely in accord with the ex-

pected behavior of the high-energy amplitudes from
Yukawa-type potentials /see reference 6j.

4. DISCUSSION

Ke are now in a position to give a detailed assessment
of our results in relation to Yukawa potential scattering.
It is clear that our potential has many properties analog-
ous to a Yukawa potential of range P '. The Regge
trajectories as well as the high-energy behavior of the
scattering amplitude follow closely the Yukawa pattern.
The complete amplitude f(s,t) is analytic in both t and s,
having a bounded behavior as t~ ~, and exhibiting
cuts for (1) t)P', s)0 and (2) t)P', s( —stP'. This
second cut, however, has no analog in pure Yukawa
potential scattering, and corresponds to the so-called
"crossed channel" (t, I variables). The amplitude thus
seems to exhibit some features characteristic of "field-
theoretical" amplitudes. It has come to the authors'
notice that a similar conclusion about the existence of a
cut tOtp, sp —sp using a different type of separable
potential was reached by Cushing. "

A closer comparison of our results with the "Mandel-
stam representation" for Yukawa potential scattering,
however, reveals the following points of dissimilarity
with the Yukawa case. The Yukawa amplitude has
additional branch cuts starting successively at the
points t=e'd()s (I=2, 3, 4, ), and the discontinuities
across these successive cuts are given by the standard
prescription of analyticity and unitarity. '" This im-
portant manifestation of the Mandelstam representa-
tion is not present in our model given by Eqs. (2.2) and
(2.3). Thus our amplitude does Not show the points
t=n'ps as thresholds of any fresh discontinuities, the
discontinuity functions at these points being merely
the continuation of the one starting at t= P'. We would
like to point out however, that the absence of the above
feature is just a consequence of the very special kind of
potential chosen, viz. , one which gives a left-hand cut in
A i(s) corresponding to the first Born approximation for

"J. T. Cushing, Ph.D. thesis, Iowa State University, 1963
(unpublished).

Substitution of these results in (3.26) gives in this
limit

f( t)= —20 t '(—t/)"" '" (332)

Changing s to t and vice versa in (3.32) we obtain for
the high-energy amplitude f(s, t) in the crossed channel

f(s,t) =p(t)s. "&,

where, consistently with (3.29),
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Ei in the 1V/D solution. On the other hand, the succes-
sively higher cuts at f= e'P (e= 2, 3, 4, ) in a Yukawa
amplitude can be most easily understood in terms of
the higher Born approximations to the amplitude, the
mth Born approximation showing for the first time the
branch point at t=e'P' (see reference 5). Since, however,
the effects of these successive Born approximations are
absent in our model, the t-discontinuity function of our
model falls short of the corresponding function in a
Yukawa amplitude by roughly the contributions from
(1) the second Born approximation. in the interval
4P'~&1~&9'', (2) the second and third Born approxima-
tions in 9P'~& t ~& 16P', and so on.

From these considerations, a possible way of extend-
ing our potential so as to incorporate the additional
branch points at 3=0'P' is suggested on the following
lines. In Eq. (2.5) of reference 1 a prescription was
given for writing down an "equivalent separable po-
tential" which would give the same 6rst Born amplitude
as the actual potential in question. In a similar way, a
separable potential could be written down so as to in-
clude the contribution of the second Born Yukawa
amplitude in its definition, viz. ,

vp(p) = (8~9) ' dQ Ei(cos8)f&" (0' cos8), (4.1)

where f"i is the Yukawa amplitude ep to the second
Born approximation and (4.1) replaces (2.3). This
separable potential is not quite "equivalent" to the
Yukawa potential in the above sense of reproducing the
second Born amplitude up to 0(X'), since a X' contribu-
tion from the first-order 1V/D solution would also be
included in the result. However, (4.1), from its very
definition, would now include the effect of the additional
t cut for t ~& 4P . The additional discontinuity across this
cut wouM be automatically incorporated in the formal-
ism described in Sec. 2, since unitarity for each partial
wave is explicitly built into this formalism. However,
the mathematical structure of the amplitude would not
be amenable to a "prescription" of the type discussed
by Blankenbecler et u/. ,

' wherein the discontinuity
function is built up in successively larger regions
t) e'P' through a knowledge of this function for t&e'P'
A similar extension to include the t cuts for 9P', 16P',
etc., could be made on the lines of Eq. (4.1) though the
procedure would fast get extremely cumbrous. It does,
however, give some indication of the type of contribu-
tions that are missing from the potential (2.3) compared
with the Yukawa potential, and the type of terms
needed to compensate for them. Later in this section we
shall give a more exact (but formal) definition of the
"equivalent separable potential" than is provided by
Eq. (2.5) of reference 11, or Eq. (4.1) of this section.

A somewhat diferent insight into the meaning of our
separable potential (2.2) and (2.3) comes from a com-
parison of the amplitude Ai(s) with the so-called
Fredholm solutions to the Yukawa amplitudes for

each partial wave which have been given recently by
I.ee and Sawyer. " It is immediately seen that Ai(s)
is just the amplitude corresponding to a truncation to
first order in X in both the numerator and denominator
of the Fredholm solution. This feature is not unexpected
since a separable potential automatically leads to solu-
tions in which the Fredholm denominator terminates
at a 6nite integral power X" (in the present case, e= 1).
However, this correspondence of our result with the
first-order truncated Fredholm amplitude gives a clue
to the appearance of the left-hand s cut in our f(s,t).
The qualitative reasoning is roughly as follows. Since
we know from earlier work' that the exact Yukawa
amplitude fr (s,t) does not have a left-hand s cut, it is
clear that the same must be true when the complete
Fredholm amplitude is considered. Our result of Sec.
2 indicates, on the other hand, that a truncated Fred-
holm amplitude can show a residual left-hand cut. These
two statements can be quite consistent with each other
when we recognize the possibility of "cancellations"
within a Fredholm amplitude of a certain order of
truncation. Thus, for small values of X, the first-order
Fredholm truncation shows a left-hand cut of order
(X'), as well as a right-hand cut of order X'. However, in
a higher order of truncation say the eth, it is more likely
that the left-hand cut is (for small X) of order X"+',
while the right-hand cut still remains of order X'. It is
just fortuitous that for our case of m=1, the left- and
right-hand cuts appear to be of the same order of magni-
tude, but the difference between them must show up in
successively higher orders of truncation in order that
in the limit of m —& ~, the left-hand cut may vanish
altogether.

Finally it may be of some interest to compare our
amplitude (2.5) with one obtained by taking only the
Born approximation to the left-hand cut in the various
partial wave amplitudes. ' These amplitudes fi(s) are
defined for the present case by the equation

where Ei(s) is given by (2.6). The amplitude fi(s), by
its very definition, leads only to the right-hand cut in s
in the f'ull amplitude f&(s,t). This is seen by summing
over all the partial amplitudes according to (2.3) and
noting that the first term in (4.1) gives just the term
(2.12). The integral term in (4.2), on the other hand,
has only a right-hand cut in the s variable. In the nota-
tion of Eq. (2.26), the amplitude fi (s,t) has the
representation

fi(s, t) =8~9,(P2—t) '+ ds' 8+'(s', t)//(s' s), (4.3)—
where 8+'(s, t) is given by (2.27) with 2 i(s) replaced by
f~(s), and the corresponding B '(s, t) is zero in (4.2).

3o B. W. Lee and R. I'. Sawyer, Ann. Phys. (to be published).
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In a formal way, it is possible to modify the potential
(2.2) so as to lead only to a representation like (4.3).
One could always write the solution of (4.2) in the form

f~(s) =&~'(s)/D~'(s) (4. 4)

with 1V&'(s) and D&'(s) having only left-hand and right-
hand cuts, respectively, 3' and then dehne a new separable
potential v&'(p) through an equation of the form L'cf. ,
(2 2)j

vP (P) = (2zr'X)
—'X ' (P') (4.S)

This definition is of course a highly implicit one insofar
as 1V&'(s) and D~'(s) satisfy two coupled integral equa-
tions. However, a formal definition like (4.5) of the
"equivalent separable potential" is quite unambiguous
and works equally well for any given amplitude Lnot
necessarily (4.2)j, expressed in an E/D form. For a
two-body system, a separable potential defined in the
above manner —starting from a given amplitude A (s,t)
and projecting out its various partial waves f&(s)—is in
some sense equivalent to the generalized two-body
potential of Chew and Frautschi32 for the same amplitude
A (s,t) Lthe connecting link being provided by the com-
mon amplitude A(s, t)]. For a three-particle system,
on the other hand, the predictions may be different for
the two cases, and as has been pointed out already in
Sec. 1, separable potentials have at least a computa-
tional advantage for a three-particle system.
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APPENDIX A

For all s outside —ee&s&1 and Re/ —1/2, the
asymptotic form of Qt(s) for large ~l( is

Q~(s)=(~/2) '"(s'—1) '"Ls—(s' —1)'"3'+'
Xr(t+ 1)/r(t+-;). (A1)

In particular, this formula holds for positive in-
tegral /. Substituting (A1) in (2.7) and making the
transformation

1+ (8'/2s') = cosh L2y/ (21+1)],
one finds for t))1 (positive integer)

1+ (P'/2s) =cosh (n —ze'), (et) 0),

(A1) can be expressed as

(A4)

Q~(1+P'/2s) =L~/(2l+ 1) sinhn]'"
XexpL —(n —ie') (t+-', )$, (AS)

where e') 0, by virtue of (A4). On the other hand, the
asymptotic behavior, for large

~

t
~

(t =4+F4), of
P&(1+t/2s) occurring in (2.3) is given by'e

Pg(1+t/2s) =
t zr(21+1) sinht j—'"

XLe&'+'~r&ie t'+i&r$, (A6)
where

s=1+(t/2s)=cosh(f)=cosh($+izt), $~)0, (A7)

and the & signs in (A6) correspond, respectively, to
Ims) or &0. Thus

P~(1 +t 2/ )s&
~
zr(2t+1) sinhf

~

—'"
Xexp(W L&(lg+-', )—ztlrj), (Ag)

the upper or lower signs being taken according to the
criterion of a positive exponent. For positive integral
l (tr=0), substitution of (AS) and (AS) in (2.3) leads,
therefore, to the condition of convergence as

(A9)

which is just the Lehmann ellipse and corresponds, for
c'=q=0, to

0 &t &P'. (A10)

It may be that the series (2.3) is also convergent for s
on the real axis (negative side) of the s plane. Indeed,
In Eq. (A4), if s= —kP (real), where kP& (1/4)P', one
has

—x= 1—(P /2kP) = —coshni, ai) 0. (A11)

Since most of the contribution to the integral comes
from y& 1 Ldue to the presence of exp( —y)), it is pos-
sible to neglect y/(2t+1) compared with unity, so that
for s not too large, (A2) is evaluated asymptotically to
yield

1—Dg=gzr9p '(2)+1) '

X(1+0((2t+1) ' sP '(2l+1) '$) (A3)

Thus, for l suKciently large, one has a&=1, so that
A ~=X~. Further, by setting for s= k'+ie (e)0),

3/2 co
y i i/2

1—D)=4K dy Pe " 2 coth
2t+1 e 2l+1/

Further, since for integral l,

(A12)

P' —4s sinhz (A2)
2t+1

"H. P. Noyes and D. Y. Wong, Phys. Rev. Letters 3, 191
(&9S9)."G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961).

Eq. (A1) can now be used to evaluate Q&(
—x), via

(A12). For s lying on the real axis between 0 and
—(1/4)P', the Q& function in (2.3), therefore, yields a
convergent exponential factor as in (AS). Thus, follow-
ing the steps from (AS) to (A10), one again arrives (for
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t real and positive) at precisely the condition (A10),
as long as kP & t/4, i.e. , s) t/—4. On the other hand, for
s& t/—4, (A7) gives )=0, implying from (A6) that
Pi(1+t/2s) has only an oscillatory behavior in t
(exponent purely imaginary). Thus the convergence of
the series (2.3) is assured for negative real s up to
—p'/4. For values of s with Res& —p'/4, even the Qi
function in (2.3) has an oscillatory exponential factor,
since now 1+ (P'/2s) is numerically less than unity (for
Ims=0). The convergence of the series in this case is
facilitated by separating out from A i(s) its Born approxi-
mation part Iir i(s), according to Eqs. (2.9)—(2.11) of
the text, so that from (A3) the quantity Bi(s) of (2.9)
picks an additional factor (2l+1) ' compared with
A i(s). The convergence of the series

Zi(2t+1)&i(&)I'i(s) (A13)

now follows for s= —kP (real) and 0&t&P', where
k22) P'/4, in the same way as before. It may be noted
that as a function of s, I'~(1+t/2s) has no cuts for
s( —P'/4( t/4 H—owe.ver, since the Qi function that
appears in Bi(s) has cuts on the negative real axis for
s( —p'/4, one must use s= —k2'Hie in its argument,
to ensure proper analytic behavior in s. By this pro-
cedure one has

1+-,'P'( —k22ai4) = cosh(e2+ig2), (A14)

where e2) 0 and 0(»&m. Eq. (A5) should now be re-
placed by

Qit 1+(P'/2s)]=lm/(2l+1) sinh(42&i»)]'~'
Xexp/ —(t+ ,') (e2+-i4tg)] (A15. )

Explicitly,

In region (1), y(1—f)'= y, so that

d$ ('(5+y) '"

=ay'+& dt t'(&+1) '" (changing g to Py). (83)

This integral is convergent as long as Ref& —1. In
region (2),

dk k'Lt+y(1 —5)']'"

" t'

dk 5' ' 1+El ~y"5 "(1—t)'" .i&I j
The integration can now be performed by observing
that the contribution of the upper limit in all the terms
of the n summation vanishes, and that in the lower
limit (y), (1—$)' is well approximated by unity (since
y«1). This gives, after a slight rearrangement,

I (9) —~

— 1 t
——,

' y'+~

,+El
I+ ', o i n )I—-E—-',

(84)

Using the identity

"(—-l
Zl I,= dt's ' '(1+8) '"

0 5 r4)m —t——,
'

dk 5'((+1) '", (»)

( P2/2k, 4) csc» and csc&, 1 P~/2k, 2 (A16) valid for Rel& —1/2, one finds from (83)—(85)

I ( )=I '&+I '~
APPENDIX B

Consider the integral =. (t+l)-'+y'"~ « ~'(~+1)-'" (86)

Ii(s) =1 Di(s) =oP d$—(@PAL
—s($—1)'] '~' (81) =0 (t+-,')—'$1—

m
—'i'y'+&r (l+ 1)I'(-,' —I)], (87)

dt ~ (t+ 1)- =r(t+1)r(—t——,')/r(-,'). (Bs)
(1) 0& $&y; (2) y& 5&1. (82)

noting the relation
in the region of real s &0, s being small. Setting s = —yP',
where 0(y«1, (81) can be divided into the regions 00


